Domination in Graphs of Minimum Degree at least Two and Large Girth
نویسندگان
چکیده
We prove that for graphs of order n, minimum degree δ ≥ 2 and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 1 3 + 2 3g ) n. As a corollary this implies that for cubic graphs of order n and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 44 135 + 82 135g ) n which improves recent results due to Kostochka and Stodolsky (An upper bound on the domination number of n-vertex connected cubic graphs, manuscript (2005)) and Kawarabayashi, Plummer and Saito (Domination in a graph with a 2-factor, J. Graph Theory 52 (2006), 1-6) for large enough girth. Furthermore, it confirms a conjecture due to Reed about connected cubic graphs (Paths, stars and the number three, Combin. Prob. Comput. 5 (1996), 267-276) for girth at least 83.
منابع مشابه
Hypo-efficient domination and hypo-unique domination
For a graph $G$ let $gamma (G)$ be its domination number. We define a graph G to be (i) a hypo-efficient domination graph (or a hypo-$mathcal{ED}$ graph) if $G$ has no efficient dominating set (EDS) but every graph formed by removing a single vertex from $G$ has at least one EDS, and (ii) a hypo-unique domination graph (a hypo-$mathcal{UD}$ graph) if $G$ has at least two minimum dominating sets...
متن کاملLower Bounds for the Domination Numbers of Connected Graphs without Short Cycles
In this paper, we obtain lower bounds for the domination numbers of connected graphs with girth at least 7. We show that the domination number of a connected graph with girth at least 7 is either 1 or at least 1 2 (3 + √ 8(m− n) + 9), where n is the number of vertices in the graph and m is the number of edges in the graph. For graphs with minimum degree 2 and girth at least 7, the lower bound c...
متن کاملRoman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
متن کاملPaired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملA note on independent domination in graphs of girth 5
Let G be a simple graph of order n, maximum degree ∆ and minimum degree δ ≥ 2. The independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. The girth g(G) is the minimum length of a cycle in G. We establish sharp upper and lower bounds, as functions of n, ∆ and δ, for the independent domination number of graphs G with g(G) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 24 شماره
صفحات -
تاریخ انتشار 2008